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Note 

Computational Techniques for Spherical Boundary Conditions 

I. INTRODUCTION 

In a previous paper [ 11, spherical boundary conditions (SBC) for computer 
simulation of thermodynamic systems were introduced. The D-dimensional system 
(volume V) lies on the surface of a (D + 1)-dimensional sphere with radius R. This 
sphere is centered at the origin and will be called Z in the following. To generate 
random moves for Monte Carlo, a further sphere A (radius S) will be introduced. The 
center of A coincides with the center of the particle to be moved in a given Monte 
Carlo step and thus lies on the surface of Z. The spheres Z and A are imbedded in 
(D + 1)dimensional Euclidean space, whereas noneuclidean geometry has to be used 
as to the D-dimensional system. The particles lie totally on the surface of Z, e.g., 
disks becoming calottes. All distances within the system are geodesic ones, i.e., 
segments of great circles. 

As in [ 11, the canonical (NVT) ensemble is considered. Periodical boundary 
conditions (PBC) and SBC differ in the method generating the configurations (see 
Sections II and III). Given these configurations, the thermodynamic quantities are 
determined for SBC and PBC in a similar way. 

The first suggestion of SBC [2] was originally unknown to us. Parallel to our 
theoretical approach [ 11, another group independently obtained molecular dynamics 
data for two-dimensional SBC [3,4] studying long-range potentials. Packings of hard 
disks and spheres have also been obtained by the use of SBC [5, 61. 

II. MONTE CARLO WITH SBC 

For computational reasons, it is most convenient to set R = 1, I; being a unit 
sphere. In the following equations, however, R will be included for the sake of clarity. 

A sample of N equal D-dimensional particles is placed on the surface of the 
(D + 1).dimensional sphere Z (radius R) centered at the origin. The position of 
molecule i is defined by a vector ri with Cartesian coordinates satisfying the con- 
dition 

20: xf+y;+zf=R2, (14 
30: xf + y; + z; + w; = R2. (lb) 

The distance rij between two particles is the shortest connection within space, i.e., the 
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length of the smaller segment of the connecting great circle. It is easily calculated by 
taking the scalar product of position vectors ri and rj: 

20: rij/R=cos-1[(xixj+yiyj+zizj)/R2], 

30: rij/R = COS - ’ [ (XiXj + JJivj + ZiZj + Wi Wj)/R ‘1. 

(29 

(2b) 

The simple structure of these equations was one of the main arguments to use 
Cartesian instead of polar coordinates. For example, (2a) turns into 

rij/R = COS- ’ [COS 19~ cos 13, + sin 19~ sin 0, COS(~i - oj)] (3) 

using polar coordinates, 8, and v)~ being defined as usual. Although one wastes 
storage for N coordinates with Cartesian formulation, higher speed in evaluating 
distances will make up for that by far. 

Now we turn to the generation of random moves necessary for Monte Carlo 
simulation [7]. Let pkn denote the single step probability from state k to state n (with 
energy E,) to occur. Then the following relation must be satisfied [7]: 

‘kpkn = %Pnk 3 u, = exp(-E,,/kT). (4) 

Now suppose configurations k and n differ only by a random move of one particle, 
say m. Then pkn may be factorized: 

Pkn = py x ,;wpt = py X min [ 1, exp(E, - EJkT], W 

where p:;“’ and p:zept give the respective probabilities for trial and thermodynamic 
acceptance of the move k + n. pirept is usual Monte Carlo. For SBC, however, pyi”’ 
has to be modified. For PBC, pFia’ = const within a small D-dimensional cube 
around the old position of particle m, and zero outside. Generally, 

trial trial 
Pkn =Pnk (5b) 

is the result when combining (4) and (5a). For SBC, this is most easily achieved by 
isotropic displacements. For D = 2, one could choose two random numbers defining 
distance and angle of the random move. This is very straightforward in principle but 
awkward to handle on the computer. First one has to transform rm to the north pole, 
generate the random move and transform back. This involves matrix algebra for each 
move with the possibility of vanishing determinants. Thus we adopted another 
procedure based on a method due to Marsaglia [8]. 

For a start, a random point has to be generated on the surface of a (D + l)- 
dimensional sphere A (radius 8) mentioned in the introduction. Correspondingly, we 
label this procedure surface sampling. Generally, 6 4 R, thus r= R sin-‘(G/R) E 6, r 
being the maximum displacement of the random move of particle m. Sphere A is 
centered at r,,,, the position of m before the trial. 
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For D = 2, we generate two random numbers v, and v2 independent and uniform 
on [- 1, 1 ] until S = vt + v: ( 1 is fulfilled. Then the vector S = (6,, 6,) S,), 

20: 6, = 26v,(l - sy2, 6, = 26v,( 1 - sy2, 6, = S(1 - S), (6a) 

is uniform on the surface of A. For D = 3, generate v, and v2 independent uniform on 
[-1, l] until S, = vi + v: < 1. Then choose v3 and v4 independent and uniform on 
[-1, 1 ] until S, E vi + vi < 1 is fulfilled. The resulting vector 8, 

30: a,= dv,, 6, = Bv2, 6, = 6v,[(l - SJS,]“‘, 6,= 6v,[(l - SJS,]“‘, 

(6b) 

is uniform on the surface of A. Now add 6 to the current position r’m and normalize 
the result to length R. The new position r:“’ is given by 

D=2,3: r”,e” =R(r,+6)lr,+SI-1, (7) 

see Fig. 1. The resulting probability density for the displacement is isotropic up to 
r= R sin -‘(6/R) z 6, and zero for larger displacements. It is, however, by no means 
uniform, see below. The described method is easy to handle and fast in computation. 
Possible modifications are discussed in the next section. 

III. MODIFIED GENERATION OF RANDOM MOVES 

For surface sampling we generated a random point (8) on the surface of the 
(D + 1)-dimensional sphere A (radius 8). As a generalization, we introduce q-volume 
sampling, 

D=2,3: S(q) = t%, (8) 

t being a random number uniform on [0, 1 ] and q > 0 a given power. Then q = 0 

SPHERE A 

FIG. 1. Generation of random moves with spherical boundary conditions in 2 dimensions. For 
surface sampling, 6 (which points to the surface of A) is added to the current position rm and the result 
projected back to C. For q-volume sampling, 6 is shortened to S(q) = SP, added to rm and projected 
back to C. 
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SPHEREB 

FIG. 2. To calculate the probability distribution of displacements for 2-dimensional surface 
sampling, the old position r, is put into the north pole. The probability P,,,(r, 6, R) to generate a 
displacement within distance r from rm is given by the ratio of shaded surface (A, + A?) to total surface 
of A. The dashed line tangential to d corresponds to the maximum displacement f, for which A, + A, 
covers the whole surface of A, and accordingly P,,,(?, 6, I?) = 1. 

formally corresponds to surface sampling, q > 0 yields random points within the 
volume of sphere d, the weighting of the distances up to 6 depending on q. Equation 
(7) remains valid if 6 is replaced by S(q). 

For D = 2, we start with the results for surface sampling. The probability to 
generate a displacement smaller than r (measured on 2) is given by 

PO&-, 6, R) = PIG-/R) + M-/R)1/4~~2, if rcr; 

= 1, if r>r; J= R sin’(d/R). 
(9) 

See Fig. 2. The first index of P,,, refers to q, the second to D. Analytical calculation 
yields 

P,,,(r, 6, R) = 1 - cos(r/R)( 1 - [(R/6) sin(r/R)]‘)“‘, r < f. W> 

For SBC, usually 6 < R. Thus, taking the limit (S/R) -+ 0 results in an excellent 
approximation of P,,, : 

f’b’,:(r, 6) = 18$no P,,,(r, 6, R) = 1 - [ 1 - (r/Q*] I’*, r < T;im = 6. (lob) 

Differentiating (lOa) with respect to r yields the probability density 

po,2(r, 6, R) = aP,,,(r, 6, RIP 

= (l/R) sin(r/R)[ 1 + (R/6)2 cos(2r/R)] 

x (1 - (R/d) sin(r/R)12)-I’*, r<T 

= 0, r > F. (lla> 

See Fig. 3a. In the limit (S/R) + 0, 

p$(r, S) = (r/P)[ 1 - (r/6)2] -“2, r < 6. (1 lb) 
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FIG. 3. Probability distributions p&r, 6, R) of displacements generated with q-volume sampling for 
SBC. (a) D = 2; (b) D = 3; (-) q = 0, (--) q = f, (- . -) q = 1, ( .. . ) q = 1. In fact, q = 0 (-) means 
surface sampling, but is considered as a special case of q-volume sampling for consistency reasons. All 
curves have been obtained by Monte Carlo runs, the spread being within drawing accuracy. The shape 
of the curves is almost independent of the actual choice of 6/R, provided 6/R Q 1(6/R being 0.08 in 
Fig. 3). 

Accordingly, surface sampling favours large displacements. When r approaches i;, 
p0,2 diverges as (J- r)-I”. All types of q-volume sampling provide some remedy for 
this fact by putting more weight on small displacements. For explicit calculations, we 
consider the points within the volume of sphere A. Their distance from the center of A 
is denoted b, 0 < b Q 6. Using a random variable t uniform on [0, l], (8) yields for 
the density of random points b = 6tq on [0,6] 

p*(q) = [b(‘--q)‘q 6- ““l/q. (14 

Uniform sampling within the volume of the (D + 1)-dimensional sphere A means that 
pb has to be proportional to bD. Accordingly, the relation 

q = l/(D + 1) (13) 

must be fullfilled for uniform volume sampling. By inspection of Fig. 2, one can see 
that P,,D can be calculated from P,,, for any q: 

f&k 4 R) = j’ PO&, b, RI p&l db. 
0 

Using PO,, , Eq. (lOa), one gets, e.g., 

P,,,,,(r, 6, R) = 1 - cos(r/R)( 1 - [(R/6) sin(r/R)] 2)3’2, 

for uniform volume sampling in two dimensions. In the limit, 

Pl;lf;l,2(r, S) = 1 - [ 1 - (r/6)2]3’2, r < 6. 

r < r; 
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Differentiation yields for the respective probability densities 

~,,~,~(r, d,R) = (l/R) siri(r/R)( 1 + (R/6)‘[3 - 4 sin’(r/R)]} 

X { 1 - [(R/6) sin(r/R)]*}“*, r-c& (164 

pY;,*(r, S) = 3(r/#)[ 1 - (r/d)*]“*, r < 6. (16b) 

The quantities Py,y and pi,: can also be calculated. For instance, 

p$(r, 6) = (4r/?r6)pb’3r, 8). (17) 

Figs. 3a and b display the Monte Carlo results for pp,* and p4,3, respectively. In both 
figures, (S/R) is 0.08, the cases q = 0, f, i, and 1 being included. The curves agree 
with the theoretical pi,: within Monte Carlo accuracy. Table I shows the efficiency 
of the selected algorithms for surface sampling and q-volume sampling for several q. 
Incidentally, the results Pi,mD and pi,: are exact if the described sampling procedure is 
used for displacements in Euclidean space and not on the surface of Z. Thus, surface 
sampling and q-volume sampling can also be used for periodic boundary conditions. 

Figs. 3a and b show that only surface sampling favours large distances. In the 
other cases exhibited, p is zero and thus continuous at r = r: Now, we consider the 
displacement probability j 4,D per unit space on the surface of .Z. Instead of r, we 
differentiate with respect to I’. Thus, 

~~,,D(r,~,R)=~P,,,(r,~,R)/~v=p,,D[~v/~r]-’; 

D = 2: aV/ar = 2~rR sin(r/R), D = 3: aV/i?r = 4zR* sin*(r/R). (18) 

TABLE I 

Average Number of Variates and Roots per Trial when Generating 
a Random Displacement for SBC 

9 D Variates Square roots Cubic roots 

0 2 2.55 3.27 0 
a 2 3.55 5.27 0 
f 2 3.55 3.27 1 
$, CR” 2 5.73 2.91 0 
f 2 3.55 4.27 0 
1 2 3.55 3.27 0 
2 2 3.55 3.27 0 

0 3 5.09 4.55 0 
$ 3 6.09 6.55 0 
f, CR” 3 12.97 5.33 0 
d 3 6.09 5.55 0 
1 3 6.09 4.55 0 
2 3 6.09 4.55 0 

‘Uniform volume sampling can also be accomplished by a crude method CR, i.e., sampling uniformly 
in a cube and cutting out the inscribed sphere A. 
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TABLE II 

Values of the Displacement Probability per Unit Space on Z 

4 D 0 0.25 0.50 0.15 1.0 

0 2 1.0 
1 4 2 2.0 
4 2 3.0 
4 2 co 
1 2 03 

0 3 1.0 
4 3 4.0 
t 3 00 
1 3 co 

1.03 1.15 1.51 co 
2.19 2.39 2.22 0 
2.90 2.60 1.98 0 
4.13 2.63 1.59 0 
5.21 2.09 0.96 0 

1.03 1.15 1.51 03 
3.87 3.46 2.65 0 

10.54 4.19 1.93 0 
15.49 3.46 1.18 0 

Note. Probability density $‘J(r, S) k, for surface sampling (q = 0) and q-volume sampling where 
k, = 2~6’ and k, = n*6’ are chosen to make &z equal to one for (r/6) = 0. 

For instance, po,z of Eq. (11 a) transforms to 

&J(r, 6, R) = (27&)-‘[ 1 + (R/6)* cos(2r/R)](l - [(R/6) sin(r/R)]*)-I’*, r < f. 

(19) 
The divergence at r = r remains. For I Q r; however, &,* is approximately constant, 
thus reflecting the uniform distribution (on ,YjJ for small displacement. Table II shows 
values of $$ for various q, Eq. (18) being inserted in the results for pi,: obtained 
analytically. For instance, one can see that the choice q = l/4 yields an almost 
uniform random move up to r; especially in two dimensions. On the other hand, 
surface sampling is the simplest and fastest procedure considered, cf. Table I. Actual 
Monte Carlo runs are necessary for a linal decision as to which method to adopt for 
a given potential. 
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